радиус вписанной окружности в многоугольник определяется по формуле
r=a/(2*tg(360°/2*n))
или сторона равна
a=2r*tg(360°/2*n)
для правильного треугольника
a=2rtg60°=2r*sqrt(3)
и периметр p1=6r*sqrt(3)
для правильного шестиугольника
a=2rtg30°=2r*/sqrt(3)
и периметр p2=12r/sqrt(3)
отношение
p1/p2=6r*sqrt(3): 12r/sqrt(3) = 3/2
Ответ дал: Гость
. боковая грань пирамиды - равнобедренный треугольник с основанием 5см и углом при вершине 60. исходя из того, что треугольник с углом 60 и равнобедренный, делаем вывод, что он равносторонний. значит, его боковая сторона, которая является боковым ребром пирамиды, тоже 5см.2. катет bc^2=29^2 - 21^2 = 8*50 =400. bc=20находим площадь dab s=20*29/2=290. площадь dac s=20*21/2=210dc^2=20^2+21^2=841=29^2 dc=29по теореме про три перпендикуляра, тк cb перпендикулярно ac, то cb перпендикулярно cd.треугольник dcb прямоугольный, s=20*20/2=200площадь боковой поверхности пирамиды = 290 + 210 + 200 =700
Ответ дал: Гость
пусть дана трапеция abcd
дано bc = 7
ab = 5
cd = 13
проведем сh - перпендикуляр к основанию
abch - прямоугольник по определению( стороны паралельны и прямой угол)
значит противоположные стороны равны
по теореме пифагорв в треугольнике chd выразим hd
hd*hd=cd*cd-ch*ch значит hd =12
средняя линия по определению равна полусумме оснований = (7+7+12)/2=13
Популярные вопросы