в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
т.к. все грани одинаковые, то получим:
s бок. пов. = 3 * 12 = 36 см²
ответ. 36 см²
Ответ дал: Гость
если площадь боковой поверхности правильной треугольной пирамиды равна 144 см², то площадь боковой грани равна 144 / 3 = 48 см².
если сторона основания равна х, то апофема равна √(100 - (х/2)²), а площадь боковой грани х * √ (100 - х²/4) / 2 = x * √ (400 - х²) / 4 = 48
получаем уравнение
x * √ (400 - х²) = 192
х² * (400 - х²) = 36864
х⁴ - 400 * х² + 36864 = 0
решив это уравнение. как биквадратное, получаем х₁ = 12 см х₂ = 16 см.
в этом случае апофема d₁ = 8 см d₂ = 6 см.
Ответ дал: Гость
площадь основания вычисляется по формуле π * r², а площадь боковой поверхности 2 * π * r * h.
поскольку площадь боковой поверхности вдвое меньше площади основания, то r = 4 * h, то есть н = 2 см.
Популярные вопросы