Площадь любого четырехугольника если у него диагонали перпендикулярны можно вычислить по формуле, как площадь = половине произведения диагоналей => 38*38/2=722
Спасибо
Ответ дал: Гость
Авс -треугольник осевого сечения, ав=вс=са=а, r=(корень3)*а/6 -радиус вписанной окружности в треугольник он же радиус сферы вписанной в конус, r=а/2 -радиус основания конуса, l=ав=а -длина образующей, sсф=4*пи*r^2, sбок.кон=пи*r*l, sсф/sбок.кон=(4*пи*r^2)/(пи*r*l)=(4(3*а^2/36))/((а/2)а)=(а^2/3)/(a^2/2)=2/3
Ответ дал: Гость
по расширенной тееореме синусов
a\sin a=b\sin b=c\sin c=2*r
a=2*r*sin a
a=60 градусов
а=2*10*sin 60=10*корень(3)
сумма углов треугольника равна 180 градусов
третий угол равен c=180-60-15=105
площадь треугольника равна половине произведения сторон на синус угла между ними
s=1\2*a*b*sin c=1\2a*2r*sin b*sin c=a*r*sin b*sin c
Популярные вопросы