Пусть даны отрезок ав и точка m. из точки m проводим дугу, пересекающуюся с отрезком ab в точках k и n. ищем середину отрезка kn и соединяем ее с точкой m. как найти середину отрезка: пусть kn – данный отрезок. проведем две дуги, взяв за центры точки k и n. они пересекутся в двух точках р и q. проведем прямую pq. о – точка пересечения этой прямой с отрезком kn и есть искомая середина отрезка kn.
Ответ дал: Гость
радиус окружности из формулы для объема v=4/3*πr³
r∛(3v/4π)=∛(3*36π/4π)=3 дм
найдем расстояние от центра шара до точки
oo1=√(r²+r²+r²)=r√3 дм
Ответ дал: Гость
в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
т.к. все грани одинаковые, то получим:
s бок. пов. = 3 * 12 = 36 см²
ответ. 36 см²
Ответ дал: Гость
если круг вписан в квадрат, то сторона квадрата равняется диаметру круга, тогда r=2см. sк=пr2(пи r в квадрате)=4псм2
Популярные вопросы