из точки а перпендикулярно на плоскость проводим линию. пересечение проведённой линии и линии плоскости будет точка d. получаем 2 прямоугольных треугольника с общей стороной ad. первый треугольник с катетами bd и ad. сторона bd равна 12 см., согласно . второй треугольник acd, где ac его гипотенуза. по нам нужно найти длинну стороны dc. сумма квадратов катетов равна квадрату гипотенузы.
решение: ab^2=ad^2+bd^2
ac^2=ad^2+dc^2
dc^2=ac^2-ad^2=ac^2-ab^2+bd^2
dc^2=36-169+144=11
dc= квадратный корень из 11( если условие записано правильно)
Ответ дал: Гость
пусть основание параллелепипеда abcd
используя формулу
d1^2+d2^2=2(a^2+b^2)
находим вторую диагональ основания (первая =3,2 по условию )
(3,2)^2+d2^2=2*(5^2+8^2)
10,24+d2^2=178
d2^2=167,76 - это меньшая диагональ основания
найдем высоту параллелепипеда
h^2=(ac1)^2-(ac)^, где ac1- большая диагональ параллелепипеда
Популярные вопросы