Противоположные стороны параллелограмма равны, поэтому по теореме косинусов можно сразу найти косинус угла свd в треугольнике cbd: cos(cbd)=(bc²+bd²-cd²)/(2*bc*bd) или в нашем случае: cos(cbd)=(25+36-16)/60=3/4. ответ: < cbd=arccos(3/4) или ≈41,4°.синус угла cbd равен sin(cbd)=√(1-9/16)=√7/4. диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна sabcd=2*sbcd. scbd=(1/2)bc*bd*sin(cbd) или scbd=15√7/4. sabcd=2*15√7/4=15√7/2=7,5√7. ответ: sabcd=7,5√7.для проверки найдем по теореме косинусов в треугольнике авd косинус угла а: cosa=(16+25-36)/40=1/8. sina=√(1-1/64)=(√63)/8=(3√7)/8. тогда площадь параллелограмма равна sabcd=ab*ad*sina или sabcd=(20*3√7)/8=15√7/2=7,5√7. ответ совпал с полученным ранее значением.
Ответ дал: Гость
решение
треун.abc - равнобедренный
ab=bc
ac= 6 см
периметр авс = 16 см, найдём ав и вс, 16=6+ав+вс
ав=вс=5 см
проведём высоту вн, она также явл медианой, значит ан=нс=3 см
треуг. внс прямоуг, по теореме пифагора найдём вн
вс(квадрат)=вн(квадрат) + нс(квадрат)
25=вн(квадрат) + 9 см
вн=4 см
теперь найдём площадь, 1\2 вн * ас
2*6=12 см кв.
ответ: 12 см кв.
Ответ дал: Гость
3. пусть х и у - искомые углы. тогда из условия:
х - у = 72
7у = 3х решив эту систему, получим у = 54, х = 126. как видим х+у = 180. значит углы могут быть смежными.
4. если в параллелограмм можно вписать окружность, значит его диагонали - биссектрисы, т.е. авсд - ромб. ас перпенд вд (по св-ву диагоналей ромба). пусть о - точка пересеч. диагон. и центр вписан. окр. в прям. тр-ке аод проведем высоту ок. это и есть искомый радиус впис. окр.
по т. пифагора найдем ад = кор(аоквад + одквад) = 9кор2/2. теперь можем найти ок по известной формуле для высоты опущенной на гипотенузу:
Популярные вопросы