∆mda = ∆mdc, ∆ mcb = ∆ mab площадь поверхности пирамиды равна 2* s ∆ mda + 2* s ∆ mcb + s abcd dm ┴ cd по условию, тогда по теореме пифагора найдем mc: mc = 5√2 s∆mdc = ½ * cd * md = ½ * 5 * 5 = 25 /2 по теореме о трех перпендикулярах cm ┴ cb тогда s ∆ mcb = ½ * 5√2 * 5 = 25√2/2 s поверхности = 2* 25/2 + 2 * 25√2/2 + 25 = 50 +25√2 приблизительно равно 83
Ответ дал: Гость
диагонали паралелограмма в точке пересечения делятся пополам, поэтому
bo=co
обозначим угол boc через а, тогда смежный угол cod равен 180 градусов - а
площадь треугольника равна половине произведения двух сторон треугольника на синус угла между ними
поэтому площадь треугольника boc равна 1\2*bo*oc*sin a
площадь треугольника boc равна 1\2*do*oc*sin (180 - a)
по формуле sin(180- a)=sin a, отсюда
указаннанные треугольники имеют равную площадь
Ответ дал: Гость
дано: апофема а=6 см
ребро осн.c=5 см
найти s
решение: s=3*(1/2)*а*c s=(3/2)*6*5=45 кв.см
Ответ дал: Гость
ав-касательная к окружности, ов-радиус окружности, следовательно ав перпендикулярно ов.
рассмотрим прямоугольный треугольние аво, где ,в=90*, оа=41 см, ов=9 см.
Популярные вопросы