пусть медиана пересекает сторону ва в точке о. рассмотрим треугольник аос ар в нём биссектриса . точка р это точка пересечения биссектрисы тупого угла и медианы со. биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам ао=3,5ас=9 тогда рс: ор= ас: ао ср: ао= 9: 3,5=90: 35=18: 7
Ответ дал: Гость
Проведем высоту из вершины, тогда высота в кв=2.8 в кв-2 в кв(т.к высота из вершины в равнобед. 3-угольнике делит противолежищую сторону пополам)=7.84-4=3.84=8 корень из 0.06. площадь 3-угольника=высота*сторону : 2=4*8 корень из 0.06: 2=16 *корень из 0.06
Ответ дал: Гость
1. треугольник авd - прямоугольный, угол ваd=90-60=30 (град), значит dв=ав/2 (катет, лежащий против угла в 30 град). т.е. ав=2dв=2*2=4 (см)
2. треугольник авс - прямоугольный, угол с=90-60=30 (град), значит ав=вс/2 (катет, лежащий против угла в 30 град), т.е. вс=2ав=4*2=8 (см)
3. dс=вс-dв=8-2=6 (см)
Ответ дал: Гость
в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
Популярные вопросы