Пусть одна часть х см тогда проекции будут 2х см и 3х см. рассмотрим 2 прямоугольных треугольника и выразим из них расстояние от точки до плоскости получим 1089-9х*х=529- 4х*х 1089-529= -4х*х +9х*х 560= 5х*х х= 4 корня из 7 см. найдём длину перпендикуляра 1089-9*112=1089 -1008=81 значит перпендикуляр 9 см.
Ответ дал: Гость
пусть авсd-равнобокая трапеция. проведём через вершину в прямую, параллельную стороне аd. она пересечёт луч dc в некоторой точке е. четырёхугольник авеd-параллелограмм. по свойству параллелограмма ве=аd. по условию ad=bc (трапеция равнобокая), значит, треугольник все равнобедренный с основанием ес.углы треугольника и трапеции при вершине с , а унлы при вершинах e и d равны как соответственные углы при пересечении параллельных прямых секущей.поэтому угол аdc= углу bcd.ч.т.д.
Ответ дал: Гость
c- ребро куба
6*6=c*c+c*c=2c*c
36=2c*c
c*c=18
c=3v2 - ребро куба
cosa=3v2/6=v2/2
Ответ дал: Гость
3. пусть х и у - искомые углы. тогда из условия:
х - у = 72
7у = 3х решив эту систему, получим у = 54, х = 126. как видим х+у = 180. значит углы могут быть смежными.
4. если в параллелограмм можно вписать окружность, значит его диагонали - биссектрисы, т.е. авсд - ромб. ас перпенд вд (по св-ву диагоналей ромба). пусть о - точка пересеч. диагон. и центр вписан. окр. в прям. тр-ке аод проведем высоту ок. это и есть искомый радиус впис. окр.
по т. пифагора найдем ад = кор(аоквад + одквад) = 9кор2/2. теперь можем найти ок по известной формуле для высоты опущенной на гипотенузу:
Популярные вопросы