обозначим основание перпендикуляра о а сами наклонные др и дк . угол между проекциями 60 гр. а наклонные равны, то равны и проекции значит на плоскости лежит прямоугольный равнобедренный треугольник. наклонные равны, значит треугольник ими образованный равнобедренный. но в нём угол 60 гр значит он равносторонний. кр= 2см. найдём проекции х*х+х*х= 4 по теореме пифагора 2х*х=4 х*х=2 х= корню из 2 х- это длина проекции . длина наклонной 2 . найдём длину перпендикуляра 4=х*х+ 2 х*х= 2 х= корню из 2.
Ответ дал: Гость
введём обозначения пусть точка из которой проведены наклонные м её проекция на плоскость о наклонные мр и мк. пусть длина одной наклонной хсм тогда второй х+26 у меньшей наклонной меньшая проекция. выразим из двух треугольников рмо и кмо длину мо . выразим её квадрат мо в квадрате х*х-144 или (х+26)*(х+26)-1600. составим равенство и х*х-144= х*х +52х+676 -1600 получим 52х=780 х 780: 52 х= 15 см. этодлина перпендикуляра найдём х х= корню из 144+225 х= корень из 369 мк равна корню из 225+1600=1825
Популярные вопросы