Пусть х и у - длины смежных сторон искомого прямоугольника. обозначим d - его диагональ, p - полупериметр. тогда x+y=p и x²+y²=d². т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. поэтому процесс построения выглядит так: 1) строим прямой угол с вершиной о (он задает оси декартовой системы координат). 2) строим окружность с центром в о и радиуса d (ее уравнение x²+y²=d²). 3) на сторонах прямого угла отмечаем точки a и b на расстоянии p от точки о и проводим прямую ab (уравнение этой прямой x+y=p. заметим также, что ∠oab=45°). пусть c - какая-нибудь точка пересечения этой прямой с окружностью. 4) опускаем перепендикуляр cd на оа, и перпендикуляр ce на ob. тогда прямоугольник oecd - искомый. действительно, его диагональ oc равна радиусу окружности, т.е.равна d. его полупериметр равен ec+cd=od+da=oa=p, т.к. cd=da, поскольку ∠oab=45°.
Спасибо (1)
Ответ дал: Гость
ав=ас=2√2, вс=2
построим дополнительную т.д симметрично относительно вс, получаем прямую призму с основанием равносторонним параллелограммом, в котором нам наобходимо найти угол два1
вд=дс=2√2
ва1=√(аа1²+ав²)=√(1+8)=√9=3
ад²+вс²=2(ав²+вд²)
ад²=2(ав²+вд²)-вс²=2(8+8)-4=28
а1д²=аа1²+ад²=1+28=29
рассмотрим δдва1 вд=2√2, ва1=3, а1д=√29 по т. косинусов
а1д²=ва1²+вд²-2ва1*вдcosдва1
cosдва1=(ва1²+вд²- а1д²)/2ва1*вд
cosдва1=(9+8-29)/(2*3*2√2)=-12/(12√2)=-1/√2
< два1=135°
Ответ дал: Гость
при пересечении двух прямых получается четыре угла, которые попарно равны (вертикальные углы или накрест лежащие) или сумма двух попарных углов равна 180 градусов(смежные углы) если сумма двух углов =140, то это вертикальные углы, значит уг.1=уг.3=140/2=70 град.
уг.4=уг.2=180-70=110, получается что два угла по 70 град., а два по 110 град.
Популярные вопросы