Пусть х и у - длины смежных сторон искомого прямоугольника. обозначим d - его диагональ, p - полупериметр. тогда x+y=p и x²+y²=d². т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. поэтому процесс построения выглядит так: 1) строим прямой угол с вершиной о (он задает оси декартовой системы координат). 2) строим окружность с центром в о и радиуса d (ее уравнение x²+y²=d²). 3) на сторонах прямого угла отмечаем точки a и b на расстоянии p от точки о и проводим прямую ab (уравнение этой прямой x+y=p. заметим также, что ∠oab=45°). пусть c - какая-нибудь точка пересечения этой прямой с окружностью. 4) опускаем перепендикуляр cd на оа, и перпендикуляр ce на ob. тогда прямоугольник oecd - искомый. действительно, его диагональ oc равна радиусу окружности, т.е.равна d. его полупериметр равен ec+cd=od+da=oa=p, т.к. cd=da, поскольку ∠oab=45°.
Спасибо (1)
Ответ дал: Гость
по сути прямая пересекающая паралельные прямые и расстояние образуют прямоугольный треугольник (к сожалению не представляю как вам чертеж тут нарисовать) то есть на самом деле у вас имеется прямоугольный треугольник в котором известна гипотенуза и угол. зная что синус угла это отношение противолежащего катета к гипотенузе, имеем расстояние- это и есть противолежащий катет нашему известному углу- вычисляется след образом
здесь х и есть расстояние
Ответ дал: Гость
решение: боковые стороны равнобедренного треугольника равны:
ac=bc
по теореме пифагора
ac=корень(cd^2+(ab\2)^2)
ac=корень(5^2+(12\2)^2)=корень(61) см
вс=корень(61) см
полуперитр треугольника авс равен поллусумме сторон треугольника р=(ав+вс+ас)\2
р=(12+корень(61)+корень(61))\2=корень(61)+6 cм
площадь треугольника равна половине произведения высоты на длину основания
s (abc) =1\2*cd*ab
s=1\2*12*5=30 см^2
радиус треугольника равен отношению площади треугольника к его полупериметру
Популярные вопросы