Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
Объяснение:
х2 - х3 = х2 (1 - х)
уравнение касательной, проходящей через точку (x0,f(x0)) графика функции y=f(x), имеет вид
y=f(x0)+f ' (x0)(x-x0)
в нашем случае
f(x0)=1
(7-3x)^3=1
7-3x=1
3x=6
x=2
то есть
x0=2
f' (x)=(-9)*(7-3x)^2
f '(2)=(-9)*(7-3*2)^2=(-9)*1^2=-9
y=f(x0)+f ' (x0)(x-x0) = 1+(-9)*(x-2)=-9x+19 - это и есть уравнение касательной для нашего уравнения
решение: ищем производную функции
y'=3*x^2+5*x-2
ищем критические точки
y'=0
3*x^2+5*x-2=0
(x+2)(3x-1)=0
x=-2
x=1\3
на промежутках (- бесконечность; -2), (1\3; +бесконечность)
производная больше 0
на промежутьке(-2; 1\3) проивзодная меньше 0,
значит
точка х=-2 точка максимума
y(-2)=(-2)^3+5\2*(-2)^2-2*(-2)=6
ответ: минимум функции y(-2)=6
Популярные вопросы