Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
1/n*(n+1) = 1/n - 1/(n+1) используем эту формулу
1/(x + 2019)(x + 2020) + 1/(x + 2020)(x + 2021) + 1/(x + 2021)(x + 2022) + 1/(x + 2022)(x + 2023) = 1/
1/(x + 2019) - 1/(x + 2020) + 1/(x + 2020) - 1/(x + 2021) + 1/(x + 2021) - 1/(x + 2022) + 1/(x + 2022) - 1/(x + 2023) = 1/
1/(x + 2019) - 1/(x + 2023) = 1/
(x + 2023 - x - 2019)* = (x + 2019)(x + 2023)
4* = x² + 4042x + 2019*2023
x² + 4042x + 2019*2023 - 4* = 0
4* = 4*1 - 4 = 36
2019*2023 = (2021 - 2)(2021 + 2) = 4084441 - 4 = 4084437
x² + 4042 x + 84441 = 0
d = b² - 4ac = 4042² - 4*84441 = 4*2021² - 4*84441) = 4*(4084441 - 84441) = 4*4 = 2²*2000² = 4000²
x12 = (-4042 +- 4000)/2 = -4021 и -21
ответ -21 и -4021
выделим кавдрат суммы х*х-2х +1+3 (х-1)(х-1) +2. если х-1 то х-1=0 и значение выражения равно 2. это наименьшее
21*12+21*14+26*79=
=21(12+14)+26*79=
=21*26+26*79=26(21+79)-26*100=2 600
Популярные вопросы