Дан треугольник авс с гипотенузой вс=3, катетами ав=√3 и ас=√6; опустим перпендикуляр ак к этой гипотенузе, тогда отрезки вк и кс будут проекциями катетов ав и ас на гип. вс. найдем ак: для этого рассмотрим два прямоугольных треугольника авс и акс. запишем выражения для синусов угла асв sinacb= ak/√6 для треугольника акс sinacb= √3/√3 для треугольника авс приравняем правые части и найдем ак=√18/3=√по теореме пифагора найдем вк вк^2=ab^2-ak^2=(√3)^2-(√2)^2=1 bk=1 kc=3-1=2
Ответ дал: Гость
v=pi*r^2*h=35 дм
для увеличенного цилиндра:
v=pi*r^2*3h=35*3=105 дм
Ответ дал: Гость
если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
сложив площади всех треугольников, мы получим площадь многоугольника s=(n/2)*(l1+l2+… +ln)*a
с другой стороны, площадь многоугольника вписанного в окружность равна
s=r*n*a/2
то есть
(n/2)*(l1+l2+… +ln)*a= r*n*a/2
то есть
(l1+l2+… +ln)*a= r*a
что и надо было доказать
Ответ дал: Гость
вектор еf=вектор ев + вектор bf= 1/4 вектора да + 4/5 вектора ва =
Популярные вопросы