сечением будет прямоугольник авмр : м- середина сс1, р-середина дд1,мр параллельно ав ( плоскость пересекает параллельные плоскости по параллельным прямым) мм1=12 ( в прямоугольнике дсмм1), а ар=13 , как гипотенуза прямоугольного тр-ка ард(ад=12 по усл, др=см=5) тогда периметр р= (12+13)*2=50
Ответ дал: Гость
радиус вписанной окружности: r = s/p,
радиус описанной окружности: r = abc/4s,
где s - площадь треугольника, р - полупериметр
площадь треугольника можно вычислить по формуле герона:
s= √p(p-a)(p-b)(p-c), где р - полупериметр
р = (18 + 15 + 15)/2 = 24 см
s = √24(24-18)(24-15)(24-15) = 108 cм²
радиус вписанной окружности: r = 108/24 = 4,5 см,
радиус описанной окружности: r = (18 * 15 * 15)/(4*108)= 9,375 см
Ответ дал: Гость
3. пусть х и у - искомые углы. тогда из условия:
х - у = 72
7у = 3х решив эту систему, получим у = 54, х = 126. как видим х+у = 180. значит углы могут быть смежными.
4. если в параллелограмм можно вписать окружность, значит его диагонали - биссектрисы, т.е. авсд - ромб. ас перпенд вд (по св-ву диагоналей ромба). пусть о - точка пересеч. диагон. и центр вписан. окр. в прям. тр-ке аод проведем высоту ок. это и есть искомый радиус впис. окр.
по т. пифагора найдем ад = кор(аоквад + одквад) = 9кор2/2. теперь можем найти ок по известной формуле для высоты опущенной на гипотенузу:
Популярные вопросы