Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
сначала строим произвольную прямую,отмечаем произвольную точку,
строим из нее угол равный данному,затем отмечаем на прямой расстоянии равное данному,и из конца получившегося отрезка строим второй угол,там,где пересекутся две прямые-будет 3 вершина треугольника
Ответ дал: Гость
пусть дан треугольник авс, достроим его до параллелограмма авсд, тругю авс и дсв равны по трем сторонам (вс-общая, ас=вд как противоположные стороны параллелограмма,) их площади раывны. следовательно площадь треуг авс равна половине площади параллелограммв авсд, т.е. s1/2ab*ch
Популярные вопросы