св( -4 4) сд(-1 7) сд*св= 4+28= 32 это скаляроное произведение векторов. оно не равно 0 вычислим координаты дв (3 3) дс( 1 -7) дв*дс= 3-21= -18 тоже не равно 0 вс(4 -4) вд( -3 -3) вс*вд= -12+12=0 тогда вс перпендикулярна вд угол в=90 гр тк вд перпендикулярна вс то высотой будет сторона вд длина этого вектора будет равна корню из суммы квадратов координат 9+9=18 длина вд корень из 18 или 3 корня из 2.
Ответ дал: Гость
треугольник равнобедренный, значит боковые стороны равны.
1 случай:
пусть х(см)-длина боковой стороны, тогда (х-4)см - длина основания, по условию периметр равен 15см. составим и решим уравнение:
х+х+(х-4)=15;
х+х+х-4=15;
3х=19,
х=19: 3
х=6 1/3
6 1/3(см)-длина одной боковой стороны
6 1/3 +6 1/3=12 2/3(см)- сумма боковых сторон.
2 случай:
пусть х(см)-длина основания, тогда длина боковой стороны (х-4)см. составим и решим уравнение:
х+(х-4)+(х-4)=15;
х+х-4+х-4=15;
3х=23,
х=7 2/3
7 2/3(см)-длина основания
7 2/3-4=3 2/3(см)-длина боковой стороны
3 2/3+3 2/3=7 1/3(см)-сумма боковых сторон (не удовлетворяет теореме о неравенстве треугольника)
ответ: 12 2/3(см).
Ответ дал: Гость
пусть ав = h, проведем еще высоту ск = h. тогда из пр. тр-ка cdk:
сd = 2h/кор3, dk = h/кор3. ak = bc = 8 - (h/кор3).
если в трапецию можно вписать окр-ть, то суммы противоп. сторон равны.
ad+bc = ab + cd или:
8 + 8 - (h/кор3) = h + (2h/кор3). найдем h:
h = (16кор3) / (3 + кор3). теперь распишем площадь:
s = (a+b)*h/2 = (8+8-(16/(3+кор3)) * (8кор3)/(3+кор3)
h = 128(3+2кор3) / (3+кор3)^2 = 128(3+2кор3) / 6(2+кор3). домножим и числитель и знаменатель на (2-кор3).
Популярные вопросы