в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
т.к. все грани одинаковые, то получим:
s бок. пов. = 3 * 12 = 36 см²
ответ. 36 см²
Ответ дал: Гость
в прав. 4-уг. пирамиде sabcd проведем высоту боковой грани scd - sf и высоту самой пирамиды so.
треугольник sof - прямоугольный. so=2кор3, угол sfo = 60 град.
тогда sf = so/sin60 = 4 см. fo = so/tg60 = 2.
так как в основании - квадрат, его сторона равна 2fo = 4. полная поверхность пирамиды складывается из площади квадрата со стороной 4 и 4-х площадей треугольников с основанием 4 и высотой 4.
Популярные вопросы