abcd- равнобедрренная трапеция, bc и ad - основания трапеции, bd=10м - диагональ, вк - высота, угол bdk=60 градусов. рассм треугольник bkd - прямоугольн.т.к. bk перпендикулярно ad. sinbdk=bk/bd, bk=sin60*bd=(корень из 3)/2*10=5 корней из 3. по т. пифагора bd^2=bk^+kd^2, kd^2=bd^-bk^, kd^=100-75=25. kd=5. по свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.) kd=(bc+ad)/2=5. тогда s=(bc+ad)/2*bk=5*5корней из 3=25 корней из3.
Ответ дал: Гость
авс-основание пирамиды, s-вершина пирамиды, о-проекция s на основание и точка пересечения высот основания
из прямоугольного треугольника аоs
ао=asxcos60, а sо=asxsin60
ao=8x0.5=4
sо=8x√3/2=4√3 - это высота пирамиды h
ao=2/3ak, где ак-высота основания h
ак=3/2ао
ак=3/2х4=6
из правильного треугольника авс, где высота и медиана по теореме пифогора находим сторону основания а
ак²=а²-(а/2)²
а²=4/3хак²
а=4√3
площадь основания равна
s=(ah)/2
s=(4√3x6)/2=12√3
v=(sh)/3
v=(12√3x4√3)/3=48
ответ: объем пирамиды равен 48см³
Ответ дал: Гость
т.к. в треугольнике сумма углов равна 180, то угол в=30 градусов.высота делит авс на 2 треугольника. рассмотрим треугольник сdв, где угол d=90, а угол в=30 градусам. св-гипотенуза, cd-катет, противолежащий углу в 30 градусов. катет, противолежащий углу в 30 градусов равен половине длины гипотенузы, значит гипотенуза в 2 раза больше сd.
вd=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза вd равна катет сd делить на синус 30. синус 30=1/2
Популярные вопросы