Радиус описанной окружности равностороннего треугольника равен 8.найдите периметр треугольника и радиус вписаной окружности. центр и описанной, и вписанной окружности правильного треугольника лежит в точке пересечения медиан ( высот/биссектрис). медианы точкой пересечения делятся в отношении 2: 1, считая от вершины. причем радиус описанной окружности содержит 2/3, радиус вписанной 1/3 медианы ( высоты). следовательно, и радиусы описанной и вписанной окружности относятся так же: r: r=2: 1 r=8, ⇒ r=8: 2= 4 высота данного треугольника h=8+4= 12 сторона треугольника а=h: cos(60° )=8√3 периметр р=3*8√3=24√3 ответ: р=24√3 r=4
Ответ дал: Гость
угол авд=90-50=40 град (треугольник адв - прямоугольный)
уголсвд=углуавд=40 град (вд - биссектриса)
уголв= 40*2=80 град
уголс=угол адв-угол свд=50-40=10 град (уголадв - вгешний для треуг всд)
угол вдс=180-50= 130 град (углы адв и вдс - смежные)
вд< сд,т.к.
уголс< угласвд
Ответ дал: Гость
доказательство: углы равнобедренного треугольника при основании равны(свойство равнобедренного треугольника)
угол omn=уголonm
msиnf -биссектрисы, значит
угол oms=1\2уголomn=1\2уголonm=угол onf
mon равнобедренный треугольник с основанием mn, значит
om=on
треугольники fon и som равны за стороной и двумя углами, прилегающими к ней соотвественно
Популярные вопросы