у ромба диагонали перпендикулярные и в точке пересечения делятся пополам
пусть диагонали ромба равны a и b соответственно, тогда если точка о- точка пересечения диагоналей, то если рассматривать прямоугольный треугольник aob, то ao=a/2 и ob=b/2, а площадь треугольника aob=ab/4.
поскольку у ромба 4 таких треугольника , то его площадь равна 4*ab/4=ab, что следовало и доказать
Ответ дал: Гость
треугольники подобны k=4/5
=> площади относятся как к квадрат=16/25
Ответ дал: Гость
обходим треуг. и выписываем равенства х+у=12, у+z=9, z+х=6 ,где х,у,z- искомые отрезки (они попарно равны по свойству отрезков двух касательных, проведенных к окружности из одной точки сложим почленно 2(х+у+z)=27, x+y+z=13,5 , но т.к. х+у=12 , то 12+z=13,5 и z=1,5. аналогично х+9=13,5,
х=4,5 . 6+у=13,5 и у= 7,5.
Ответ дал: Гость
обозначим как обычно авсд (ав перпенд. ад). проведем высоту ск. из треуг. скд катет ск= корень из(169-25)=12. это потому, что кд = разности длин верхнего инижнего оснований. s(осн.)=(14+9)*12/2=138. v=sh=138*10=1380 куб. см.
Популярные вопросы