Квадрат медианы к стороне в равен a^2+b^2\4 квадрат медианы к стороне а равен b^2+a^2\4. квадрат медианы к гипотенузе равен c^2\4 . сложим всё это a^2+b^2+b^2\4 +a^2\4+c^2\ 4=c^2+c^2\4+c^2\4=3\2c^2. что и требовалось доказать.
Ответ дал: Гость
наклонная, высота опущенная с точки a на плоскость и плоскость образуют прямоугольный треугольник abc, где ab=6 и угол acb=30°
катет (высота) прямоугольного треугольника лежит противь угла 30°, то есть равен половине гипотенузы (наклонной), откуда наклонная равна 2*6=12
проецию находим по теореме пифагора
cb^2=(ac)^2-(ab)^2=144-36=108
cb=sqrt(108)=6*sqrt(3) - проекция
Ответ дал: Гость
x+x+x+3=45
3x=42
x=14
14+3=17
ответ: 14см 14см 17 см
Ответ дал: Гость
по определению
sin a=bc\ab
cos b=bc\ab
поєтому
sin a=cos b=5\10=1\2
это табличные значения, значит
a=30 градусов
b=60 градусов
с прямоугольных треугольников(сумма острых углов прямоугольного
Популярные вопросы