Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
дано: sabcd-правильная пирамида
sm-апофема, sm=6
sh-высота, sh=3sqr(2)
найти: сторону основания пирамиды.
решение:
авсd-правильная пирамида, следовательно, в её основании лежит правильный многоугольник, т.е. квадрат.
рассмотрим треугольник som, в нём so-высота пирамиды, следовательно so перпендикулярно основанию.
по теореме пифагора ом=sqr(sm^2-so^2)=sqr(6^2-(3sqr(2))^2)=
sqr(36-18)=sqr18=3sqr(2)
теперь найдём сторону основания пирамиды.
она равна 2ом=2*3sqr(2)=6sqr(2)
пусть abcdefm - данная пирамида, о - ее центр, пусть к -середина ab
тогда om=16 mk=20
с прямоугольного треугольника omk по теоереме пифагора
ok=корень(mk^2-om^2)=корень(20^2-16^2)=12
с равностороннего треугольника abc
oa=ob=ab=2ak=2bk=2\3*корень(3)*12=8*корень(3)
sбп=6*s (abm)=6*1\2*ab*mk=3*20*8*корень(3)=480*корень(3)
ответ: 480*корень(3)
Популярные вопросы