углы при основании уг. а=уг. с=(180-64) : 2=58 гр. по теореме о сумме углов в треуг. и о угла при основании в равнобедренн. треуг.
уг. мса=58 : 2=29 гр. , т.к. см-биссектриса
в треуг. амс уг.амс=180-(29+58)=93 гр. по теореме о сумме углов в треуг.
Ответ дал: Гость
находим периметр
p=18+24+30=72
находим полупериметр
p=72/2=36
находим площадь по формуле герона
s=216
находим радиус
r=s/p
r=216/36=6см
находим площадь круга
s=36пи см квадратных
Ответ дал: Гость
и внутренние и внешние касательные пересекутся в точках расположеных на прямой, проходящей через о1 и о2, исходя из полной симметрии относительно этой прямой.
пусть в1в2 - внешняя касательная (пересекает ось симметрии в точке а2 за меньшей окружностью)
с1с2 - внутренняя касательная ( пересекает ось симметрии в точке а1 между окружностями.
а1а2 = ?
а1а2 состоит из двух отрезков: а1о2 = х и о2а2 = у.
тр.о1с1а1 подобен тр. о2с2а1 (прямоугольные и одна пара равных углов).
для того, чтобы найти площадь боковой поверхности достаточно найти высоту параллелепипеда, периметр основания известен: 4*4=16. т.к. диагональ образует с плоскостью основания угол 45 то большая диагональ ромба, большая диагональ параллелепипеда и ребро параллелепипеда образуют прямоугольный рабнобедреный треугольник, катет которого равен диагонали ромба. найти диагональ ромба можно исходя из того, что ромб с углом 60 состоит из 2-х равносторонниз треугольников со стороной 4, высота каждого 3-уг. равна 4*корень(3)/2 = 2*корень(3). значит, катет равнобедреного треугольника равен 4*корень(3). отсюда площадь боковой поверхности параллелепипеда 16*4*корень(3)=64*корень(3).
Популярные вопросы