вычислите площадь равнобедренной трапеции,периметр которой равен 32см, длина боковой стороны -- 5см,а ее высота -- 4 см.
a^2=c^2-b^2 a^2=5^2-4^2 a^2=9 a=3
32-5*2=22
(22-3*2)2=8 см наименьшее основ
8+2*3=14 наибольшее основ
s=(a+b)\2*h s=(8+14)\2*4=22 cm^2
Ответ дал: Гость
пусть одна сторона равна x, поскольку треугольник равнобедренный то и вторая сторона равна x, а третья равна (x+17), тогда
x+x+(x+17)=77
3x=60
x=20
то есть стороны треугольника: 20; 20; (20+17)=37
Ответ дал: Гость
1. опустим две высоты на большее основание трапеции. получим два прямоугольных треугольника, в которых известна гипотенуза (боковая сторона трапеции 6 см) и острый угол альфа. высота трапеции равна . часть большего основания . тогда, периметр равен . площадь равна
2. медианы треугольнике пересекаються и точкой пересечения деляться в отношении 2: 1, начиная от вершины треугольника. пусть медиана из вершины в треугольника авс пересекает сторону ас в точке к. тогда по свойству медиан ок=5 см. вк = 15 см. рассмотрим треугольник вск. он прямоугольный (угол с = 90 градусов). из теоремы пифагора
кс= 9 см. так как вк медиана , то ак=кс=9 см. ас=18 см.
по теореме пифагора cv
3. точка о где расположена?
Ответ дал: Гость
нехай даний рівнобедрений трикутник abc з основою ac=b і кутом при основі a=c=a
нехай bd-висота, опущена основу
тоді. ad=cd=ab*cos a=b cos a
bd=ab*sin a=b *sin a
радіус вписаного кола дорівнює відношенню площі кола до півпериметра
площа триктуника дорівнює половині дожини основи на висоту
s=bcos a*b*sin a=1\2*b^2*sin 2a
півпериметр дорівнює p=(b+b+2bcos a)\2=b*(1+2cos a)\2
радіус вписаного кола =s\p=b^2\2 *sin 2a\(b(1+2cos a)\2)=
Популярные вопросы