Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
рисуем треугольник авс. ав = вс = 10 см. проводим высоту ак на боковую сторону вс. рассмотрим прямоугольный треугольник авк. по теореме пифагора вк^2 = ав^2 - ak^2 = 10^2 - 8^2 = 36 вк = 6 см кс = вс - вк = 10 - 6 = 4 см снова по теореме пифагора ас^2 = ak^2 + kc^2 = 8^2 + 4^2 = 80 ac = 4*корень(из 5) см
1) пусть хорды расположены по разные стороны от центра окружности о, тогда пусть ab=40 и cd=14
пусть om=x - расстаяние от центра до ab, тогда on -расстояние до cd=39-x
тогда из треугольника aom :
(ao)^2=(am)^2+mo^2
(ao)^2=400+x^2
и из треугольника cno
(co)^2=(cn)^2+(no)^2
(co)^2=49+(39-x)^2
так как co=oa=r, то
400+x^2=49+(39-x)^2
78x-1170=0
78x=1170
x=15
то есть om=15, тогда
(ao)^2=(am)^2+mo^2 =400+225=625
ao=r=25
так как
s=pi*r^2=625*pi
2) пусть хорды расположены по одну сторону от центра и пусть расстояние от центра до cd=x, тогда из треугольника ond
(od)^2=(on)^2+(nd)^2
(od)^2=x^2+49
с другой стороны из треугольника omb
(ob)^2=(om)^2+(mb)^2
(ob)^2=(x-39)^2+400
то есть
x^2+49=(x-39)^2+400
18x-1872=0
78x=1872
x=24
то есть on=24,тогда
(od)^2=(on)^2+(nd)^2 => (od)^2=576+49=625
od=r=25
и
решение: произведение равно 0, если хотя бы один из множителей равен 0, поэтому исходное уравнение равносильно двум следующим:
первое:
4sin3x-1=0
4sin3x=1
sin 3x=1\4
3x=(-1)^k*arcsin (1\4)+pi*k, где к -целое
x=1\3*(-1)^k*arcsin (1\4)+pi\3*k, где к- целое
второе:
2sinx+3=0
sin x=-3\2< -1, что невозможно так область значений синуса лежит в пределах от -1 включительно до 1 включительно
ответ: 1\3*(-1)^k*arcsin (1\4)+pi\3*k, где к- целое
найдем координаты указанных векторов:
ас: [(-1---5)] = (-3,-4,-2)
bc: [(-1+--2)] = (2,-2,1)
найдем скалярное произведение этих векторов:
(ас*вс) = -3*2 + 4*2 -2*1 = 0
значит указанные вектора - перпендикулярны
Популярные вопросы