четырехугольник, вершинами которого являются середины сторон данного ромба - это прямоугольник, стороны которого равны половинам диагоналей. отсюда s=(1/2)a*(1/2)b=(1/8)*a*b=96/4=24
Ответ дал: Гость
центр шара совпадает с центром куба наибольшего объема. построим сечение проходящее через, центр шара, получим квадрат вписанный в окружность. сторона квадарата равна r√2=6√2 см
объем шара а=4/3πr³=4/3*π*6³=286π=898,04 см^3
объем куба а³=432√2
отход равен разности объемов шара и куба
286π-432√2 см³ = 287,1 см^3
процент отхода равен объем отхода к обьъему шара
287,1*100%/898,04=32%
Ответ дал: Гость
1) пусть хорды расположены по разные стороны от центра окружности о, тогда пусть ab=40 и cd=14
пусть om=x - расстаяние от центра до ab, тогда on -расстояние до cd=39-x
тогда из треугольника aom :
(ao)^2=(am)^2+mo^2
(ao)^2=400+x^2
и из треугольника cno
(co)^2=(cn)^2+(no)^2
(co)^2=49+(39-x)^2
так как co=oa=r, то
400+x^2=49+(39-x)^2
78x-1170=0
78x=1170
x=15
то есть om=15, тогда
(ao)^2=(am)^2+mo^2 =400+225=625
ao=r=25
так как
s=pi*r^2=625*pi
2) пусть хорды расположены по одну сторону от центра и пусть расстояние от центра до cd=x, тогда из треугольника ond
Популярные вопросы