Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
r=abc/(4*s)
s=√(p(p-a)(p-b)(p-c))
p=(a+b+c)/2=12
s=√(12*6*4*2)=√576=24
r=6*8*10/(4*24)=480/96=5
a(3; 4) b(2; -1)
найдём координаты вектора ав (2-3; -1-4)=(-1; -5)
найдём длину вектора ав |ab|=sqrt{ (-1)^2 + (-5)^2}= sqrt{1+25}=sqrt{26}
длина вектора ав и есть длина диаметра окружности
доказательство: углы равнобедренного треугольника при основании равны(свойство равнобедренного треугольника)
угол omn=уголonm
msиnf -биссектрисы, значит
угол oms=1\2уголomn=1\2уголonm=угол onf
mon равнобедренный треугольник с основанием mn, значит
om=on
треугольники fon и som равны за стороной и двумя углами, прилегающими к ней соотвественно
угол oms=угол onf
угол fon=угол som=угол при вершине
доказано.
1) пусть хорды расположены по разные стороны от центра окружности о, тогда пусть ab=40 и cd=14
пусть om=x - расстаяние от центра до ab, тогда on -расстояние до cd=39-x
тогда из треугольника aom :
(ao)^2=(am)^2+mo^2
(ao)^2=400+x^2
и из треугольника cno
(co)^2=(cn)^2+(no)^2
(co)^2=49+(39-x)^2
так как co=oa=r, то
400+x^2=49+(39-x)^2
78x-1170=0
78x=1170
x=15
то есть om=15, тогда
(ao)^2=(am)^2+mo^2 =400+225=625
ao=r=25
так как
s=pi*r^2=625*pi
2) пусть хорды расположены по одну сторону от центра и пусть расстояние от центра до cd=x, тогда из треугольника ond
(od)^2=(on)^2+(nd)^2
(od)^2=x^2+49
с другой стороны из треугольника omb
(ob)^2=(om)^2+(mb)^2
(ob)^2=(x-39)^2+400
то есть
x^2+49=(x-39)^2+400
18x-1872=0
78x=1872
x=24
то есть on=24,тогда
(od)^2=(on)^2+(nd)^2 => (od)^2=576+49=625
od=r=25
и
Популярные вопросы