площадь трапеции s = 0.5*h*(a + b), h -высота трапеции, a и b - основания;
120 = 0.5*h*(9 + 21); h = 8 cм.
из прямоугольного треугольника образованного боковой стороной, высотой и
отрезком образуемым вычитанием из большего основания меньшее и делением его на 2: (21 - 9)/2 = 6.
по теореме пифагора находим боковую сторону: с^2 = h^2 + 6^2 = 64 + 36 = 100. боковая сторона c = 10.
Ответ дал: Гость
треугольник авс. ав и вс - катеты, угол с=90 градусов. так как треугольник - прямоугольный, то его площадь - это половина произведения катетов. s=0.5*а*b
в любом треугольнике площадь высчитывается по формуле "половина основания умножить на высоту*. высота, проведенная из прямого угла к гипотенузе, равна h по условию, гипотенуза=c по условию. тогда s=0.5*c*h
так как это один и тот же треугольник, то 0.5*а*b=0.5*c*h
делим правую и левую части на 0.5 и получаем искомое равенство. a*b=c*h. что и требовалось доказать.
Ответ дал: Гость
построим дополнительную т.д симметрично относительно ав, получаем прямую призму с основанием равносторонним параллелограммом, в котором нам необходимо найти угол два1
вд=ас=ав=2√2
вс=да1=2
ва1=√(аа1²+ав²)=√(1+8)=√9=3
а1д²=аа1²+ад²=1+4=5
рассмотрим δдва1 вд=2√2, ва1=3, а1д=√5 по т. косинусов
а1д²=ва1²+вд²-2ва1*вдcosдва1
cosдва1=(ва1²+вд²- а1д²)/2ва1*вд
cosдва1=(9+8-5)/(2*3*2√2)=12/(12√2)=1/√2
< два1=45°
Ответ дал: Гость
Авсд -трапеция ад и вс -основания ав+сд=вс+ад т.о центр вписанной окр. треугольник сод прямоугольный ос=9, од=12, сд=15(т.пифагора)-бок. сторона r=ор-высота на сд r=ор=ос*од/сд=9*12/15=7,2 h=2r=14.4 -высота пирамиды s=(вс+ад)*h/2=(ав+сд)*h/2=(15+15)*14,4/2=216
Популярные вопросы