Площадь правильного многоугольника определяется формулой sn=n*a^2/(4*tg(360/(2n)) для шестиугольника это будет s=6a^2/4tg(30)=6a^2/(4*(1/sqrt(=3*sqrt(3)*a^2/2 3*sqrt(3)*a^2/2=54*sqrt(3) 3*a^2=108 a^2=36 a=6 для описанной окружности вокруг шестиугольника сторона шестиугольника равна радиусу описанной окружности, то есть r=6 откуда l=2*pi*r l=2*pi*6=12pi
Ответ дал: Гость
а) 1. находим координаты вершин треугольника.
- а(х; у) - точка пересечения прямых р и q. объединяем уравнения этих прямых в ситему и решаем. а()
- b(х; у) - точка пересечения прямой р с осью ох. у=0
4х-12=0
х=3
в(3; 0)
- с(х; у) - точка пересечения прямой q с осью ох. у=0
-3х-5=0
х=-5/3
с(-5/3; 0)
2. проводим высоту ан. н(9/17; 0)
3. находим длину стороны вс и высоты ан по формуле расстояния между точками.
d²=(х₂-х₁)²+(у₂-у₁)²
вс²=/3)-3)² = (14/3)²
вс=14/3
ан²=(9/17 - 9/17)² + (0 - 56/17)² = (56/17)²
ан=56/17
4. находим площадь треугольника по формуле s=½ah
s=1/2 · 14/3 · 56/17 = (кв.ед.)
ответ. (кв.ед.)
Ответ дал: Гость
пусть дана трапеция авсд, у которой ав=сд=8 см, угол а=угол д = 60 градусов, вс=7 см.проводим ск іі ав. ск=8см.треугольник ксд-равносторонний (т.к. у него все углы равны).значит, кд=8см.ад=ак+кд=вс+кд=7+8=15(см) средняя линия равна полусумме основ, т.е. (7+15): 2=11(см)ответ. 11 см.
Популярные вопросы