наклонная, высота опущенная с точки a на плоскость и плоскость образуют прямоугольный треугольник abc, где ab=6 и угол acb=30°
катет (высота) прямоугольного треугольника лежит противь угла 30°, то есть равен половине гипотенузы (наклонной), откуда наклонная равна 2*6=12
проецию находим по теореме пифагора
cb^2=(ac)^2-(ab)^2=144-36=108
cb=sqrt(108)=6*sqrt(3) - проекция
Ответ дал: Гость
Диагонали равны 32 м и 32√3 м половинки диагоналей равны 16 м и 16√3 м половинки диагоналей ромба образуют прямоугольный треугольник, гипотенузой которого является сторона ромба. отношение катетов tg α = 16√3 / 16 = √3 - табличный тангенс угла 60° так как диагонали ромба - это биссектрисы углов ромба, то угол ромба равен 2*60° = 120° острый угол ромба 180° - 120° = 60° противоположные углы у ромба равны ответ: углы ромба 60° и 120°
Популярные вопросы