рисуешь равнобедренный треугольник, проводишь бисектрисы, их пересечение будет центром окружности и рисуешь круг
Ответ дал: Гость
дано: sabcd-правильная пирамида
sm-апофема, sm=6
sh-высота, sh=3sqr(2)
найти: сторону основания пирамиды.
решение:
авсd-правильная пирамида, следовательно, в её основании лежит правильный многоугольник, т.е. квадрат.
рассмотрим треугольник som, в нём so-высота пирамиды, следовательно so перпендикулярно основанию.
по теореме пифагора ом=sqr(sm^2-so^2)=sqr(6^2-(3sqr(2))^2)=
sqr(36-18)=sqr18=3sqr(2)
теперь найдём сторону основания пирамиды.
она равна 2ом=2*3sqr(2)=6sqr(2)
Ответ дал: Гость
здесь используются подобные треугольники прямая от точки f до гипотенузы ed, образует с гипотенузой прямой угол в точке скажем a, т.к. биссектриса делит угол e пополам то углы cef и fea равны. прямая ef является гипотенузой для прямоугольных треугольников fce и fae. итак мы имеем два треугольника с двумя равными углами и одной общей стороной-гипотенузой отсюда следует, что катеты cf =fa=13см.
p.s. вот как это все в тетради оформить не
Ответ дал: Гость
строишь угол равный данному, а поторм отмеряешь на сторонах угла катет
Популярные вопросы