радиус вписанной(описанной) окружности первого равен радиусу вписанной(описанной) окружности другого
медина(высота, бисектриса) первого равна медиане другого
Ответ дал: Гость
по формуле s=pr, где p - полупериметр, а r - радиус вписанной окружности, вычислим р:
р=84: 7=12 (см)
следовательно, периметр равен 12*2=24(см)
решена.
Ответ дал: Гость
треугольники bfe и dec - подобны ( т.к. углы у ни равны)
составим нужную нам пропорцию:
bf/cd = be/ec
bf/420 = 5/7
bf = 420*5/7 = 300 м.
ответ: 300 м.
Ответ дал: Гость
поскольку длины касательных, проведенных к окружности из одной точки равны, то стороны треугольника равны 13 * х, 13 * х и 10 * х, высота по теореме пифагора h = √ ((13 * x)² - (10 * x / 2)²) = √ (144 * x²) = 12 * x, а
площадь s = 10 * x * 12 * x / 2 = 60 * x², а радиус вписанной окружности
r = 2 * s / (a + b + c) = 2 * 60 * x² / (13 * x + 13 * x + 10 * x) =
120 * x² / (36 * x) = 10 * x / 3 = 10 , откуда х = 3, а длина основания
Популярные вопросы