abcd- равнобедрренная трапеция, bc и ad - основания трапеции, bd=10м - диагональ, вк - высота, угол bdk=60 градусов. рассм треугольник bkd - прямоугольн.т.к. bk перпендикулярно ad. sinbdk=bk/bd, bk=sin60*bd=(корень из 3)/2*10=5 корней из 3. по т. пифагора bd^2=bk^+kd^2, kd^2=bd^-bk^, kd^=100-75=25. kd=5. по свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.) kd=(bc+ad)/2=5. тогда s=(bc+ad)/2*bk=5*5корней из 3=25 корней из3.
Ответ дал: Гость
ад=дс=ас/√2=8/√2=4√2 -диагональ 45°
sбок=ph=(ад*4)*сс1=4√2*4*4√2=128 см²
Ответ дал: Гость
напротв угла с лежит сторона ав. следуя логике условия ав = 5. вс = 6, ас = 7.
тогда cos c = (bc^2 + ac^2 - ab^2) / (2bc*ac) - по теореме косинусов.
cos c = (36+49-25)/(2*6*7) = 60/84 = 5/7.
ответ: 5/7
Ответ дал: Гость
плоскость нельзя провести через скрещивающиеся прямые (не имеющие общих точек). а через любые две пересекающиеся прямые можно провести плоскость - это следствие из аксиомы стереометрии: через три точки, не лежащие на одной прямой можно провести плоскость, притом только одну.
то есть выбрав на каждой из пары перес. прямых по точке мы получим вместе с точкой пересечения - три точки, не лежащие на одной прямой - а они согласно аксиоме и определяют плоскость, причем - единственную.
Популярные вопросы