по формуле пифагора сторона ромба равняется 5корень7. радиус вписанной окружности находится по формуле r=d1*d2/4a, d1 d2 - диагонали, a - сторона ромба. r=30*40/(4*5корень7)=60/корень7
Ответ дал: Гость
дан треугольник авс, ав=вс=10 м, ас=16м, r-радиус описанной окружности, r- радиус вписанной окружности. bk - высота, s- площадь треугольника авс, р-периметр треугольника авс. решение: s=(ac*bc*ab)/4r. s=1/2*p*r. s=1/2bk*ac. рассм треуг-к вкс - прямоугольный, по т. пифагора вс^2=bk^2+kc^2. rc=1/2ac, bk^2=bc^2-kc^2=100-64=36, bk=6 м. s=1/2bk*ac=1/2*6*16=48 м.r=(ac*bc*ab)/(4*s)=(10*10*16)/(4*48)=25/3 м.
Популярные вопросы