Пусть abcd – ромб, bd=52- меньшая диагональ, bh=48- высота треугольник bdh- прямоугольный, угол bhd=90° по теореме пифагора hd=sqrt((bd)^2-(bh)^2)=sqrt(2704-2304)=sqrt(400) hd=20 треугольник abh- прямоугольный, угол bha=90° по теореме пифагора (ab)^2=(ah)^2+(bh)^2 ab=ad – стороны ромба ah=ad-hd=ad-20=ab-20 тогда (ab)^2=(ab-20)^2+(bh)^2 (ab)^2=(ab)^2-40*ab+400+2304 40*ab=2704 ab=ad=67,6 sabcd=ad*bh=67,6*48=3244,80
Ответ дал: Гость
в этом осевом сечении проводим высоту,она будет равна радиусу основания-половине гипотенузы т.е. 4. v=1/3 пи r^2h=1/3пи*64
Ответ дал: Гость
пусть abcd - данный треугольник тогда ad=10
угол abd=30 градусов
ab=ad*cos 30=10*корень(3)\2=5*корень(3)
по теореме пифагора bc=корень(bd^2-ab^2)=корень(10^2-(5*корень(3))^2)=
=5
s=ab*bc=5*корень(3)*5=25*корень(3)
Ответ дал: Гость
3. пусть х и у - искомые углы. тогда из условия:
х - у = 72
7у = 3х решив эту систему, получим у = 54, х = 126. как видим х+у = 180. значит углы могут быть смежными.
4. если в параллелограмм можно вписать окружность, значит его диагонали - биссектрисы, т.е. авсд - ромб. ас перпенд вд (по св-ву диагоналей ромба). пусть о - точка пересеч. диагон. и центр вписан. окр. в прям. тр-ке аод проведем высоту ок. это и есть искомый радиус впис. окр.
по т. пифагора найдем ад = кор(аоквад + одквад) = 9кор2/2. теперь можем найти ок по известной формуле для высоты опущенной на гипотенузу:
Популярные вопросы