Провели диагональ трапеции и образовался треугольник со сторонами: 22м, 8,5м и 19,5м. найдем площадь этого треугольника по формуле герона: р=(22+8,5+19,5)=25м. s=корень квадратный из выражения: 25*(25-22)*(25-8,5)*(25-19,5)=82,5 кв.м. но площадь этого треугольника равна 0,5*22*h=82.5. h=7.5- это высота треугольника и трапеции. проведем вторую высоту трапеции и обозначим за х отрезок на нижнем основании от вершины до высоты, таких отрезков два. по т.пифагора найдем х. x^2=72.25-56.25. x^2=16. x=4. следовательно, верхнее основание равно 14м. найдем площадь трапеции: (14+22): 2*7,5=135кв.м
Ответ дал: Гость
abcd - ромб, h=7 см - высота, s = 84 см в кв. ab, bc, cd, ad - стороны ромба. решение: поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту s= ab*h, ab=s/h=84/7=12 см. т.к. все стороны ромба равны, то р=4*ав = 4*12=48 см.
Популярные вопросы