подробно.  
 треугольники aod и boc подобны по свойству трапеции.площади подобных треугольников относятся, как квадраты коэффициента их подобия 25: 16=k² k=√(25: 16)=5: 4следовательно, основания трапеции относятся, как 5: 4обозначим высоту ᐃ вос=h₁высоту ᐃ аоd=h₂s  аоd=h₂·аd: 2s  вос=h₁·вс: 2
 площадь трапеции равна произведению ее высоты на полусумму оснований: 
 высота трапеции нs abcd=н·(аd+вс): 2н=h₂+h₁s abcd =(h₁+h₂)·(аd+вс): 2==h₁·аd+h₂·аd+h1·вс+h₂·вс
 1) применим свойство пропорции:  произведение средних членов пропорции равно произведению крайних.h₂: h₁=5: 44h₂=5h₁ h₂=5h₁/4 s aod=h₂·аd: 2=5h₁/4·аd: 225=5h₁/4·аd: 2 умножим на два обе части уравнения12,5=5h₁/4·аd 5h₁/4 =12,5: adh₁: 4=2,5: adh₁·ad= 4·2,5 =10 см²
 т.к. площади боковых треугольников  у трапеции  равны   равны, то  h₂·вс=10 см²  
   это: 2)h₂: h₁=5: 45h₁=4h₂h₁=4h₂/5 s вос=h₁·вс: 2=4h₂/5·вс: 2 16=4h₂/5·вс: 2 умножим на два обе части уравнения8=4h₂/5·вс 4h₂: 5=8: вс4h₂·вс=8·5=40h₂·вс=40: 4=10 см²3) подставим значения   h₂·вс и  h₁·ad в уравнение площади трапеции
 s abcd=h₁·аd+25+16+h₂вс=41+=h₁·аd+h₂·вс =s abcd=10+25+16+10= 61 см
 
Популярные вопросы