Нам нужно доказать, что √17 является иррациональным числом. пусть оно является рациональным числом. тогда его можно представить в виде m/n, где m ∈ z, n ∈ n и дробь несократимая. возведя в квадрат, получаем, что 17 = m²/n² тогда 17n² = m² чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.
Спасибо
Ответ дал: Гость
решение: 3 cos x - sin 2 x = 0, разложим синус по формуле двойного аргумента
3*cos x- 2*sin x*cos x=0, разложим левую часть на множители
cosx *(3-2sin x)=0, произведение равно 0, если хотя бы один из множителей равен 0, поэтому
cos x=0
x=pi\2+pi*k, где к –целое, или
3-2sin x=0, то есть
sin x=3\2> 1, что невозможно, так область значений функции синус лежит от -1 включительно до 1 включительно
Популярные вопросы