Нам нужно доказать, что √17 является иррациональным числом. пусть оно является рациональным числом. тогда его можно представить в виде m/n, где m ∈ z, n ∈ n и дробь несократимая. возведя в квадрат, получаем, что 17 = m²/n² тогда 17n² = m² чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.
Спасибо
Ответ дал: Гость
cos(pi/7)*cos*2pi/7*cos(4pi/7)=-1/8
предположим что равенство верно, тогда умножим обе части равенства на 8*sin(pi/7)
Популярные вопросы