по условию составляем уравнение: т.к. нам нужно найти скорость течения реки,возьмем ее за х,тогда скорость лодки по течения равна (8+х),а против течения- (8-х).скорость плота равна скорости течения реки,т.е. равна х.значит уравнение к это 15/(8+х) + 6/(8-х)=5/х
учтем,что х не равно 8,-8 и 0 разделим обе части уравнения на произведение(8+х)(8-х)х. тогда уравнение будет выглядеть так: 15х(8-х) + 6х(8+х)=5(8+х)(8-х).раскрываем скобки,находим общие слагаемые и получаем уравнение квадратное: 4х^2 - 168x + 320=0.делим обе части на 4,получаем: x^2 - 42x + 80=0.находим дискриминант и корни уравнения.d/4=(-21)^2 - 80=361=(19)^2.
тогда х1=21-19=2,х2=21+19=40.
поэтому получется два решения.и при проверкеоба решения подходят.
ответ: х=2,х=40
Ответ дал: Гость
из условий имеем систему уравнений
x+xq +xq^2=70 (1)
(x-2)+(xq^2-24)=2(xq-8) => x-2xq+xq^2=10 (2)
из уравнения (1) вычтем (2), получим
3xq+60 => xq=20 => x=20/q
подставим это значение в (1)
(20/q))*(1+q+q^2)=70
20+20q+20q^2=70q
20q^2-50q+20=0
2q^2-5q+2=0
d=b^2-4ac=25-16=9
q=(-b±sqrt(d))/2a
q1=(5+3)/4=2
q2=(5-3)/4=0,5 - побочное решение, так как прогрессия возрастает
Популярные вопросы