в данном случае функция [y=f(x)] есть переменная величина, зависящая от другой переменной величины (аргумента x). каждому значению x [d(f) - область определения функции] соответствует какое-то значение функции y [e(f) - область значения функции].
d(f) = подкоренное выражение больше или равно 0.
4x / (5+3x) больше или равно нулю;
найдем множество решений неравенства. для этого заменим его на равносильное неравенство 4x * (5+3x) больше или равно нулю.
отметим на координатной прямой точки, в которых левая часть обращается в ноль. получим три промежутка. в крайнем правом промежутке стоит знак "+", далее знаки чередуются. в кавычках обозначены знаки промежутков:
"+" проколатая точка (-5/3) "-" закрашенная точка [0] "+"
в итоге x принадлежит промежутку (- бесконечность; -5/3) u [0; +бесконечность).
d(f) = (- бесконечность; -5/3) u [0; +бесконечность).
Ответ дал: Гость
решение: ищем производную функции
y'=3*x^2+5*x-2
ищем критические точки
y'=0
3*x^2+5*x-2=0
(x+2)(3x-1)=0
x=-2
x=1\3
на промежутках (- бесконечность; -2), (1\3; +бесконечность)
Популярные вопросы