Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
Подставим значение х=1,5
8*1,5 -5у = 17
-5у=5
у=-1
Координаты точки пересечения с абсцисс (1,5:-1)
квадратическая функция имеет вид:
y=ax^2+bx+c - это парабола и ее вершина имеет координаты
(-b/2a; c-b^2/4a)
из условий
-b/2a=0 => b=0
и
c-b^2/4a=-1 => c-0^2/4a=-1 => c=-1
то есть уравнение примет вид
y=ax^2-1
учитывая , что данное уравнение проходит через точку b(-2; 7), определяем a:
y=ax^2-1 => 7=a(-2)^2-1 => 7=4a-1 => 4a=8 => a=2
то наша функция задается формулой
y=ax^2-1 => y=2x^2-1
1) a1q^3 - a1q=18
a1+a1q^2=15
из второго уравнения, имеем
a1(1+q^2)=15 => a1=15/(1+q^2)
подставим в первое уравнение значение a1,получим
15 q^3/(1+q^2)-15q/(1+q^2)=18
15q^3-15q=18(1+q^2)
15q^3-18q^2-15q-18=0
5q^3-6q^2-5q-6=0
5q^3-10q^2+4q^2-8q+3q-6=0
(5q^3-10q^2)+(4q^2-8q)+(3q-6)=0
5q^3(q-2)+4q(q-2)+3(q-2)=0
(q-2)(5q^2+4q+3)=0
a) q-2=0 => q=2
б) 5q^2+4q+3=0
d=b^2-4ac=-44 - нет решений
итак, a1=15/(1+q^2)=15/(1+4)=3
то есть, a1=3 и q=2
s8=a1*(1-q^8)/(1-q)=3*(1-2^8)/(1-2)=3*255=765
Популярные вопросы