Тетраэдр-пирамида у которого все ребра равны, тетраэдр кавс, к-вершина, ав=вс=ас=ка=кв=кс=10, проводим высоту вн на ас, вн=медиане=биссектрисе, о-центр пирамиды - точка пересечения медиан=высот=биссектрис, вн=ав*корень3/2=10*корень3/2=5*корень3, медианы в точке пересечения делятся в отношении 2/1 начиная от вершины, во=2/3вн=2/3* 5*корень3=10*корень3/3, треугольник ков прямоугольный, ко-высота тетраэдра=корень(кв в квадрате-во в квадрате)=корень(100-300/9)=10*корень6/3
Спасибо
Ответ дал: Гость
проведем высоту на ас,т.к. треугольник равнобедренный,то высота будет и медианой,а значит разделит основания на вда равных отрезка по 8 см,через теорему пифагора найдем ее длина=6,тогда площадь треугольника =6*0,5*16=48
Ответ дал: Гость
формула площади треугольника s=1/2*b*h(h-высота, b-сторона на которую опущена эта высота)
Популярные вопросы