Втреугольнике авс ав=4,ас=6,угола=60градусов. найдите медиану ам,проведенную из вершины а. решение: по теореме косинусов: вс²=ав²+ас²-2ав*ас*cos60. или вс²= 16+36-24=28. тогда вс=2√7. вм=мс=√7. по этой же теореме найдем cosb=(ав²+вс²-ас²)/2ав*вс = (16+28-36)/16√7=√7/14. по этой же теореме медиана ам²=ав²+вм²-2ав*вм*cosb = 16+7-2*4*√7*(√7/14) =19. итак, ам=√19. ответ: медиана, проведенная из вершины а равна √19.
Ответ дал: Гость
радиус описанного шара равен половине диагонали
дмагональ с=√(4²+4²+2²)=6 см
радиус r=6/2=3 см
Ответ дал: Гость
авсд -основание
авсда1в1с1д1 -призма
ас1=а
< ас1д=30
а) ас=а*sin30=a/2
ад=ас/√2=а/(2√2) -сторона основания призмы
б) 90-30=60 -угол между диагональю призмы и плоскостью основания
в) сс1=а*cos30=а√3/2
sбок=cc1*pосн=сс1*4*ад=а√3/2(4*a/(2√2))=а²√(3/2) -площадь боковой поверхности призмы
Популярные вопросы