(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными: 
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²; 
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²; 
8² + b² = (4 – b)²; 
b² – 8 ∙ b + 4² – 8² – b² = 0; 
8 ∙ b = – 48; 
b = – 6, тогда, R = 10, и уравнение окружности примет вид: 
х² + (у + 6)² = 10². 
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
Популярные вопросы