Есть вопросы?

Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!

В равнобедренном треугольнике с длиной основания 61 cм проведена биссектриса угла
∡ABC
. Используя второй признак равенства треугольников, докажи, что отрезок
BD является медианой, и определи длину отрезка AD
.

Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке);

1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то
∡A=?
∡;
2. так как проведена биссектриса, то ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC —. По второму признаку равенства треугольников ΔABD и ΔCBD равны. Значит, равны все соответствующие элементы, в том числе стороны AD=C. А это означает, что отрезок BDя вляется медианой данного треугольника и делит сторону AC пополам.

AD=
см.

Другие вопросы по: Геометрия

Знаешь правильный ответ?
В равнобедренном треугольнике с длиной основания 61 cм проведена биссектриса угла ∡ABC . Используя...

Популярные вопросы