нарисуй правильную пирамиду кавсд с вершиной в точке к.
расстояние от точки к до плоскости авс равно высоте, опущенной из точки к на эту плоскость. эта высота, обозначим её ко падает в центр основания- квадрата авсд, которая лежит на пересечении диагоналей квадрата.
диагональ квадрата равна 2*sqr(2), т.к. сторона квадрата равна 2.
рассмотрим треугольник аок. угол аок=90 град, ао=sqr(2), т.е. половине диагонали, ак=4 (по условию). по теореме пифагора находим длину ко:
ко=sqr(4^2-2)=sqr(14)
ответ: sqr(14)
Ответ дал: Гость
Сторона ромба 20 : 4 = 5 см. по теореме пифагора abв кв = аов кв + овв кв ( о - точка пересечения диагоналей) аов кв + овв кв = 5в кв от сюда получим асв кв + dвв кв = 100 и аc + dв = 14 решим данную систему выразив ас = 14 - bd и подставив в другое уравнение получим квадратное уравнение bdв кв - 14bd +48 = 0 получим bd = 8см или 6см, ас = 6см или 8 см площадь ромба равна половине произведения его диагоналей 8*6/2 = 24 см в кв
Популярные вопросы