по идее, угол kon = 120/2 = 60, а угол kno - прямой, т.к. kn - касательная. значит, okn = 180-60-90=30 градусов. тогда kn = 12*cos(30)=12*корень_из_3/2 = 6 корней из трёх. ну а km = kn
Ответ дал: Гость
о - центр окружности
ав=ас, /оав=/оас=120: 2=60 град (св-ва отрезков касательных, проведённых к окружности из одной точки)
треуг. оав - прямоугольный (ов - это радиус, проведённый в т.касания)
сtg/oab=ab/ob, ав=ob*сtg60град=9*(√3/3)=3√3
ас=ав=3√3
Ответ дал: Гость
вершины треугольника лежат на окружности. значит, его углы вписанные и их величина равна половине градусной меры дуги, на которую опираются.
примем величину дуги ав равной 2а, дуги вс=3а, ас=4а. сумма дуг составляет полную окружность и содержит 360°.
ав+вс+ас=2а+3а+4а=9а ⇒
а=360°: 9=40°
дуга ав=80°, вписанный ∠асв=40°
дуга вс=120°, вписанный ∠вас=60°
дуга ас=160°, вписанный ∠авс=80°
Ответ дал: Гость
Противоположные стороны параллелограмма равны, поэтому по теореме косинусов можно сразу найти косинус угла свd в треугольнике cbd: cos(cbd)=(bc²+bd²-cd²)/(2*bc*bd) или в нашем случае: cos(cbd)=(25+36-16)/60=3/4. ответ: < cbd=arccos(3/4) или ≈41,4°.синус угла cbd равен sin(cbd)=√(1-9/16)=√7/4. диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна sabcd=2*sbcd. scbd=(1/2)bc*bd*sin(cbd) или scbd=15√7/4. sabcd=2*15√7/4=15√7/2=7,5√7. ответ: sabcd=7,5√7.для проверки найдем по теореме косинусов в треугольнике авd косинус угла а: cosa=(16+25-36)/40=1/8. sina=√(1-1/64)=(√63)/8=(3√7)/8. тогда площадь параллелограмма равна sabcd=ab*ad*sina или sabcd=(20*3√7)/8=15√7/2=7,5√7. ответ совпал с полученным ранее значением.
Популярные вопросы