Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
у вас гипотенуза должна была получится 14,заметим,что кт=7,и равен половине гипотенузы,значит он лежит против угла 30 градусов и лежит против угла р,значит угол к=90-30=60 градусов
Ответ дал: Гость
гипотенуза =
h=10, тк наибольшая сторона гипотенуза
sбок=pтреуг*h = (8+6+10)*10=240
Ответ дал: Гость
второй катет основания х*х=13*13-12*12=169-144=25
х=5 см, следовательно высота (h) призмы будет равна 5 см. (наименьшая боковая грань
Популярные вопросы