в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
т.к. все грани одинаковые, то получим:
s бок. пов. = 3 * 12 = 36 см²
ответ. 36 см²
Ответ дал: Гость
треуг.авс. ав=вс. ад-высота.
уг.авс=120гр., значит углы при основании вас=вса=(180-120): 2=30 гр.по теореме о сумме углов в треуг. и по теореме о углах при основании в равнобедр.
рассмотрим треуг. адс. ад=9см, уг.адс=90 гр, уг. дса=30 гр. по теореме о катете противолеж. углу 30 гр(=половине гипотенузы)
Популярные вопросы